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Abstract

Software development teams are increasingly reliant on open-source software
libraries (packages), which can, and have, introduced severe security vulnerab-
ilities into private projects. By considering the package dependency network
as a supply chain of program code, Cyber Supply Chain Risk Management
(C-SCRM) can identify and mitigate these risks. In response to developer
surveys, I create a C-SCRM visualisation system which takes a project’s current
dependencies as input and returns a visualisation of various dimensions of risk,
along with revealing how the risk factors would change if a new library were
depended upon. I use the NPM registry as a working example due to the large
set of freely-available data, and to provide context through previous incidents.
I argue my visualisation achieves many features requested by developers, but
should have better integration into existing workflows, and is lacking offline
functionality.

This report explains the steps required to construct such a visualisation system,
both in general and specific to NPM, then discusses the output of my implement-
ation and its applicability to the software development process. I also use the
underlying database to reveal interesting properties of the NPM registry, such as
35% of packages having no dependencies, 13% having more than 100 transitive
dependencies, and 80% of packages having no dependents in the registry. On
average, NPM packages have 15 contributors, 78 transitive dependencies, and a
dependency codebase 219x larger than this package’s source code.
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1 Introduction

Open-source software (OSS) is software whose source code is freely available
to access, modify, and contribute to via pull/merge requests (Open Source
Initiative, 2007). OSS is developed by a large international community, many
of whom choose to be anonymous, but can usually be trusted thanks to code
review processes and general reputation (Murdoch and Leaver, 2015).

Software development teams are increasingly reliant on third-party software
libraries, many of which are open-source. The average enterprise application
contains over 100 OSS libraries, comprising over 35% of the codebase (Pittenger,
2016). Thousands of software vulnerabilities are added to NIST’s National
Vulnerability Database each year (NIST, 2021), many of them belonging to
OSS. The compatibility issues involved in updating an already-integrated library
mean software developers often delay updating an insecure library (Pashchenko,
Vu and Massacci, 2020), so the act of choosing between libraries carries signific-
ant risk. Furthermore, the warranty disclaimers often found within OSS licenses
(Pearson, 2000), and the anonymity granted to developers, mean that the usual
security guarantees or background checks employed by critical infrastructure
developers cannot apply to OSS (see Section 2.1).

The installation and maintenance of a collection of libraries (or packages) is
simplified by package managers: when a package is installed to a local project,
it becomes a dependency of that project. Packages often have dependencies
themselves which must also be installed, creating a global network of package
dependencies, of which a small subset is used by one project. Lauinger et al.
(2017) show that software vulnerabilities can be introduced through transitive
dependencies1, which could have us believe the (in)security of a codebase is
out of the developer’s hands entirely. By considering the dependency network
as a supply chain of program code, with vulnerabilities in upstream packages
affecting all downstream packages, supply chain risk management (SCRM) can
be employed to identify and mitigate these risks. This is one instance of Cyber
Supply Chain Risk Management (C-SRCM), which can be applied to various
types of risk in the computer industry (NIST, 2016).

Pashchenko, Vu and Massacci (2020) interviewed developers about their de-
pendency management and selection practices; they show that developers often
‘avoid updating dependencies as they lack resources to cope with the breaking
changes’ (p. 1520). To aid with this, the developers suggested usage of high-level
dependency management tools (p. 1521):

Observation 13: Developers recommend introducing high-level met-
rics that show that a library is safe to use (security badge), mature,
and does not bring too many transitive dependencies.

In response to these suggestions, and with further motivation from examples in

1A transitive dependency of package A is a package that A on through transitive closure
of the immediate dependencies - i.e. any upstream package in the dependency network.
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Section 2, my project aims to provide tools to support developers with C-SCRM.
This can be divided into three aims, with the second being the main focus of
the project:

• Create a relational dataset of software packages and associated entities
(source code contributors, security advisories etc.)

• Create a visualisation tool to help developers understand the risks associ-
ated with their projects’ dependencies

• Calculate & present aggregate statistics on the dataset to reveal trends in
open-source development.

From these aims, I created a C-SCRM visualisation interface, which takes a
project’s current dependencies as input and returns a visualisation of various
dimensions of risk, along with revealing how the risk factors would change if a
new library were depended upon. The system required the construction of a
data acquisition and processing pipeline, from which visualisations can be made
for any combination of packages on the given registry. For example data, I used
NPM (Node Package Manager)2, a package manager bundled with the Node.js
runtime, which allows developers to download and manage JavaScript packages
hosted on the NPM registry. I used graph database software (Neo4j) to ease
the calculation of graph-related attributes such as transitive dependencies and
ratios of source code sizes, and constructed numerous visualisation graphs in a
web application (using D3.js) for rapid prototyping.

The following report will describe the development of this system and its ap-
plicability in the software engineering industry. Further definitions and context
will be given in Section 2, and Section 3 contains a brief collection of research
surrounding software security. I give an abstract design of a C-SCRM visualisa-
tion system in Section 4, which is applied to specific technologies in Section 5.
Various outputs of the system are given in Section 6 and discussed in Section 7,
and I assess the successes and limitations of such a system in Section 8. Finally,
Section 9 recaps the contributions and gives avenues for further research. In
some sections, I found it helpful to split the discussion into subsections for
Data acquisition (sourcing data for packages and relevant entities), Processing
(the manipulation of the acquired dataset) and Visualisation (presenting the
information to the end user).

2 Background

To provide some background and motivation for the project, I will briefly discuss
the relevance of C-SCRM in the software engineering industry, and why NPM
is a good example for this field.

2The package manager and the organisation are officially titled ‘npm’, which I write as
NPM to disambiguate between the organisation and the npm program.
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2.1 C-SCRM

The US National Institute of Standards and Technology (NIST) runs a research
project for C-SRCM, which mainly focuses IT systems rather than software, but
presents some useful terminology. In their project overview (NIST, 2016), they
categorise C-SCRM threats as either ‘adversarial (e.g. tampering, counterfeits)’
or ‘non-adversarial’ (e.g. poor quality, natural disasters)’. They categorise
vulnerabilities as ‘internal (e.g. organizational procedures)’ or ‘external (e.g.
part of an organisation’s supply chain)’. This project concerns both adversarial
and non-adversarial external threats, examples of which are given later in this
section.

In 2014, NIST first released their Framework for Improving Critical Infrastruc-
ture Cybersecurity (NIST, 2018) to ‘help an organization to align and prioritize
its cybersecurity activities with its business/mission requirements’, which has a
specific category for Supply Chain Risk Management. They make the following
recommendations (p. 28):

ID.SC-2: Suppliers... of information systems, components, and
services are identified, prioritized, and assessed using a cyber supply
chain risk assessment process.

ID.SC-4: Suppliers... are routinely assessed using audits, test
results, or other forms of evaluations to confirm they are meeting
their contractual obligations.

The growing adoption of OSS makes NIST’s recommendations more difficult
to enforce: contributors to OSS aren’t under any ‘contractual obligations’, and
usually aren’t even known to the software developers using the packages.

2.2 NPM

I chose to focus on NPM for a variety of reasons. It’s the default package
manager for an already-popular programming language3, and as a result the
NPM registry is the largest package manager registry in the world (Brown,
2017). Additionally, data about the packages hosted on the registry is easy and
free to acquire, through various REST API endpoints and data streams (see
Section 5).

NPM also offers sobering examples of supply chain risks becoming major in-
cidents, as documented by Petrik (2020). In March 2016, a developer un-
published all of their packages from the registry, making them inaccessible to
any dependent projects. One such package, left-pad, was depended upon by
thousands of projects (@izs, 2016), which after this un-publishing were unable to
operate, causing major disruption. After a controversial ‘un-un-publishing’ by
the administrators, dependent systems could download the package and continue

3In their annual survey, Stack Overflow (2020) find that 52% of professional developers are
using Node.js to some extent in their work.

3



operation. This is an example of a non-adversarial risk, according to NIST.

For an example of an adversarial risk: in September 2018, the new owner of the
widely-used event-stream package pushed an update4 that introduced a new
dependency, which was found in November 2018 to contain hidden functional-
ity to steal cryptocurrency wallet keys (GitHub, 2018), (@adam-npm, 2018).
Regardless of whether the contributor was knowingly introducing this malware,
it shows the relative ease of spreading malware to large numbers of projects
through transitive dependencies.

3 Related work

This section is divided into a few topics of relevance to the project: vulnerab-
ility prediction (assessing the security of source code), C-SCRM (assessing the
security of third-party packages), and visualisations of various kinds.

3.1 Vulnerability prediction

While only a small aspect of C-SCRM, vulnerability prediction in program
source code is a well-researched field, resulting in numerous static code analysis
tools being available to software developers. Dı́az and Bermejo (2013) assessed
9 such static analysis tools against a dataset of insecure code shared by NIST
(2009). Dı́az found the tools had an average precision (‘ratio of correctly
detected vulnerabilities to the number of all detected vulnerabilities’) of 70%,
with the best tool having 93% precision.

Bilgin et al. (2020) describes the construction of a vulnerable code classifier by
reducing source code to an abstract syntax tree (AST), then training models on
the Draper VDISC dataset (Kim, 2018). The performance/recall of the models
varied depending on the CWE examined, but is comparable to Dı́az’s findings.
Hovsepyan et al. (2012) also trained a vulnerability prediction model, instead
converting source code into a ‘feature vector’ of code keywords (monograms)
with their frequencies. This conversion gave their model a prediction accuracy
of 87%.

However, all of the above methods rely on having a local copy of the source
code available. Such methods might be infeasible for large programs (or indeed
for examining an entire package registry), so methods have been explored that
instead use metrics of the code.

Sultana (2018) compared vulnerability prediction models using ‘traceable code
patterns’ (coding patterns specific to one programming language) and ‘software
metrics’ (coarse attributes of a program’s methods/classes/files), and found that
“class-level metrics and method-level metrics outperform micro patterns and
nano-patterns respectively in terms of precision” (p. 88).

4https://github.com/dominictarr/event-stream/commit/e3163361
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Similarly, Shin (2011) predicted vulnerabilities from ‘complexity metrics’, such
as the number of lines of code (LoC/SLoC), comment density and the number
of conditional statements in each function. They found that 25 of their 28
complexity, code churn and developer activity metrics “supported the hypothesis
for discriminate power between vulnerable and neutral files” (p. 80). Gegick,
Rotella and Williams (2009) also predicted vulnerable program components
using two candidate metrics (warning frequency from existing static analysis
tools, and SLoC); their models have an average accuracy of 90%.

Lastly, Nguyen and Tran (2010) predicted vulnerable components in Firefox’s
JavaScript Engine. Instead of using metrics or textual analysis, they constructed
dependency graphs of Members (functions or variables of a component) and
Components (a class of variables and member functions). Training a model on
the Component graph greatly reduced the false negative rates compared to Shin
and Laurie Williams (2008)’s classifier (based on nesting level), showing promise
for the use of dependency graphs in risk management.

3.2 C-SCRM

Next, I look at work undertaken to analyse vulnerabilities and risk in third-party
packages. To firstly justify my concern about dependency networks, I refer
to Lauinger et al. (2017)’s study of the behaviour of client-side JavaScript
libraries and transitive dependencies. As well as finding 37% of websites serving
outdated libraries with known vulnerabilities, they find these are more likely to
be transitive dependencies of other libraries (e.g. for ad tracking). They claim
that as well as the web developers being at fault, “the dynamic architecture and
developers of third-party services are to blame for the Web’s poor state of library
management” (p. 1).

Neuhaus and Zimmermann (2009) demonstrate that new dependencies could
both increase and decrease the risk of vulnerability, using Red Hat packages as
an example. Observing the dependencies of a package, their model could predict
vulnerability with a precision of 83%. Unlike other studies, Neuhaus’ model of
dependencies is context-aware, in the sense that depending on some package has
different effects based on the other dependencies already present.

Zhang et al. (2015) investigated the ‘attack surface exposed through package
dependency’, and developed an algorithm to calculate a project’s attack surface
for an individual vulnerability. Knowing that vulnerabilities in dependencies
can affect the security of the base project, they show that the risk of such an
attack can be measured, allowing developers to prioritise risks.

Decan, Mens and Constantinou (2018) ran a quantitative study of technical lag
in the NPM dependency network; they found that the average technical lag
(‘the time during which a dependency prevents the use of a newer version of its
target package’) of all package releases is 7 to 9 months, which is ample time
for vulnerabilities to be discovered and impact a downstream package.
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Silic and Back (2016) investigated risk factors when adopting OSS5 by inter-
viewing IT professionals. They found source code integrity to be an important
risk factor in the decision-making process (p. 173):

It is clear that the risk behind the use of OSS and the fact that by its
nature, OSS source code can be accessed and modified by unknown
individuals, directly influences the IT decision-maker.

Considering this research, it’s encouraging to find a useful tool for C-SCRM
already contained within the npm CLI: npm audit. According to the document-
ation (npm Inc., 2021), the tool generates a report of known vulnerabilities in a
project’s dependencies, and offers the ability to automatically fix them. Security
advisories in the NPM registry6 are classified as either low, moderate, high, or
critical, which can help a developer to understand the risk a vulnerability poses,
and balance that against potential breakages when updating.

While this research shows that vulnerabilities can be predicted quite effectively,
and that package dependencies introduce vulnerability in varying amounts,
little work appears to have been done to apply these ideas within the soft-
ware development process. Tools to predict vulnerabilities in packages are not
widespread, and while npm audit can identify when a current dependency has
a vulnerability, it cannot offer advice about the long-term risk of a dependency,
nor offer any advice when choosing a new package to depend upon. My project
aims to fill this gap, by producing an intuitive tool that helps software developers
understand the risk of existing and new dependencies in their projects.

3.3 Visualisation

When developing the web interface, I wanted to find examples of services with
similar goals of informing users of the risks associated with some entity, without
deciding the entity is objectively good or bad.

One such website is ToS;DR (Terms of Service; Didn’t Read), a non-profit
project started in 2012 that attempts to better-inform the public about the
often worrying contents of Terms of Service documents (ToS;DR, 2012). For
each service, they give a list of positive/negative features found in the Terms,
and assign a qualitative grade (from A to E) to give users an understanding at
a glance (see Figure 1).

Another website that performs a risk assessment of sorts is ReviewMeta, de-
veloped by Tommy Noonan in 2016 (ReviewMeta, 2016). This service analyses
the reviews given to products on Amazon, runs various statistical tests to check
their authenticity, then attempts to filter out ‘unnatural’ reviews from the total
rating. Similarly to ToS;DR, the service offers an overall grade (this time Pass,
Warn or Fail). Unlike ToS;DR, it relies on a multitude of tests that analyse

5A majority of package managers only serve open-source packages, so risks associated with
OSS also apply to package dependencies.

6https://www.npmjs.com/advisories
8https://tosdr.org/en/service/182
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Figure 1: A screenshot of the ToS;DR website, showing a report for a specific
service8. Note in particular the qualitative grade, the list of positive or negative
factors, the tooltips with further explanation, and the extensive colour coding
throughout.

the same reviews and metadata in different ways, and each get their own grade.
This creates a hierarchy of information available on the report page - the overall
grade, then the per-test grades, then the quantitative outputs from each test
- allowing the user to read only the amount and type of information they’re
interested in (see Figure 2).

On first visiting ReviewMeta, a full-screen disclaimer is presented, making
it clear to the user that the analysis “is only an ESTIMATE”, and the grades
do “NOT indicate presence or absence of ‘fake’ reviews.”. This is important
not only to remove liability, but also for users to understand that the grades
are subjective - though it seems his ‘Pass/Fail’ terminology slightly contradicts
this intention.

In terms of visualisations specifically in the field of C-SCRM, I found Synk’s Ad-
visor interface, which also examines the NPM dependency network and presents
graphs of various risk factors (see Figure 3). Advisor gives an overall score
(‘Package Health Score’), calculated from the scores in each category (Pop-
ularity, Maintenance, Security, Community), which in turn are calculated from
empirical measurements of the repository and package registry. I only discovered
this interface quite late into the project, so as a result I will wait until Section
9 to discuss its features and compare against my solution.

10https://reviewmeta.com/amazon/B07W9DVHVS
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Figure 2: A screenshot of the ReviewMeta website, showing a report for a
product that failed the analysis10. Note in particular the pass/fail states of
each test, the prominence of the overall grade, some examples of particularly
good/bad reviews, and the colour coding throughout. More detailed information
for each test is found lower on the report.

4 Methodology

This section describes the steps needed to produce the system, without giving
specific technologies to use; this will come in Section 5. It’s also written to be
nonspecific to one package registry and version control server, so the technique
can be applied to services other than NPM and GitHub (see Section 9.1). Figure
4 introduces the components and connections required to construct the system
and produce the visualisations, and is further explained in the subsections.

12https://snyk.io/advisor/npm-package/angular
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Figure 3: A screenshot of Synk Advisor, showing an analysis for the ‘angular’
package12. The top right box contains the Package Health Score with grades
from each category. These are expanded upon in the boxes below, with line
charts and histograms. The interface also offers ‘Similar Packages’, along with
with their scores (top left).

Figure 4: A flowchart of abstracted information flows between components of
the system. The design is suitable for both a live service and a static dataset
implementation. See Figure 5 for an implemented version.
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(Note that it’s possible for the package registry and version control server
to be the same service, but I have not come across an example of this setup.)

4.1 Data acquisition

The system will need to have a record of all the packages available in a registry.
This can either be a static snapshot of a registry at some timestamp, or a
live copy that inserts new packages periodically or in real-time. In order to
provide useful information to the end user, the system will also need properties
of the packages’ source code or version control repositories. Visualisations could
be made out of any such properties of a package, but Table 1 describes some
properties I identified as useful.

Entity Property Description Required?
Package name The unique name of the repository Yes
Package dependencies A list of names of packages this package depends

on
Yes

Package repo url A URL for a version control repository containing
this package.

Yes, for
repository
metadata

Package date updated A timestamp for when the package was last
updated on the registry

No

Package /
Repository

date created A timestamp for when the package/repository was
first uploaded

No

Repository date modified A timestamp for when the repository was last
contributed to, indicating active development

No

Repository num contributors The number of contributors with write-access to
this repository

No

Repository total contributions The lifetime number of commits to this repository No
Package /
Repository

bytes of code The size of the source code files, measured in bytes No

Contributor name The username of this contributor, to link contri-
butions between repositories

No

Contributor contributions The number of contributions made to this repos-
itory, by this user

No

Advisory advisory affects The identity of the package this advisory affects Yes
Advisory date published A timestamp for when the security advisory was

published
No

Advisory severity A quantitative measure of the severity of the
advisory. Values depend on registry convention

No

Table 1: A list of mandatory and optional properties of entities in the dataset.

Some of the rows above indicate the property can be found either in the pack-
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age, or in its repository. While broadly similar, the values can differ on each13,
so deciding which to use will be based on ease of access and their usefulness in
later processing. Furthermore, the bytes of code property could be swapped
with lines of code (LoC/SLoC), depending on which is easier to acquire, as they
can be converted based on a rough estimate of average characters per line of
code.

4.2 Processing

After the sources of these properties have been identified, a database will be
constructed to host the data. The entries will be relational, so a package can be
easily linked to its contributors and security advisories. The most frequent
operation on the database will be finding the tree of dependencies from a
base package, so it should be suitably indexed to aid in selecting transitive
dependencies. This requirement suggests a graph database would be well-suited,
where data and relationships are stored as nodes and edges in a graph structure.

To accommodate low-latency requests for data, it would be worthwhile precom-
puting some results, and storing them as new properties, or in separate files.
I didn’t initially know which data would need to be precomputed, but these
properties became useful to precompute during the implementation:

• Number of dependent packages: The number of packages that de-
pends on a certain package is a useful property, particularly as a proxy
for popularity. A package can have hundreds of thousands of dependents,
with many hops between it and the dependents, making the calculation
cover large portions of the dataset. Dependencies can also be cyclic, which
for a badly-written query can cause a combinatorial explosion.

Once these results are calculated, one should take care to keep them up
to date when receiving updates to the dependency network; any packages
upstream of a new package (or a new edge in the network) will need
recalculation.

• Percentile data of scoring categories: An aim of the interface is to
convey how one packages’ scores relate to other packages in the dataset. It
would be too difficult to calculate the score for every package at runtime,
and it would be space-inefficient to store every score, so I compromise
by sampling these scores at certain percentiles of the distribution. The
number of samples to take depends on our desired resolution, but 100
samples is generally suitable.

Some of these samples also required more precomputed results: for ex-
ample, calculating the bytes of code in all the upstream packages (required
for the Dependency size ratio score) is as difficult as identifying all the

13For example, a package might be in development a long time before it’s released on the
registry, so the date created property would be earlier on the repository.
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upstream packages. By precomputing the ‘transitive bytes of code’ and
storing it as a property of each package, I can run a simpler percentile
query on just those properties.

4.3 Visualisation

The visualisation serves two purposes: to examine a project’s current supply
chain risk, and to reveal how the risk would change if a new dependency were
added. To this end, I’ll create two pages: a single-project examination page
(named internally as ‘details’), and a comparison page for a new dependency
(‘compare’). The technology/medium of the visualisation is unimportant, but
should support rich text and the presentation of various graphs in colour. As
seen in Figure 4, a server is also needed to provide read-only access to the
database through a small number of API endpoints.

The most prominent visualisation will be a network graph of the package’s
dependencies. Many visual variables are available to be controlled in a network
graph, such as x/y positioning, node size and node colour. These can be assigned
based on any acquired property (see Section 4.1), but some variables are better
suited to particular properties:

• Vertical positioning should be controlled by the distance this dependency
is from the base package (the minimum number of hops to the base). This
indicates how directly the package is depended upon, and will produce a
tree-like layout.

• Node size should be controlled by the package’s source code size, to in-
dicate which packages contain a significant amount of code and which are
more lightweight.

• Many options are available for node colour, but unsafe packages (e.g.
packages associated with security advisories) could be coloured in varying
shades of red, so they stand out as risk factors.

On the comparison page, the network graph will change to indicate the sep-
aration between dependencies exclusive to the original project, dependencies
exclusive to the new package, and dependencies shared between both.

As well as graphs, the output will contain a textual summary of the dependency
tree, such as the number of transitive dependencies, the total size of the code-
base, and the number of contributors with write-access to dependent packages.
Similarly, it will output a shortlist of the top n contributors with the most
influence over the dependency tree, where influence is calculated as

Influence(contributor) =
∑
p∈T

p.commitsBy(contributor)

p.totalCommits
.

As mentioned previously, the interface will present a series of scores that can
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be easily compared against scores of other packages. The particular scoring
categories chosen will again depend on the properties acquired, but should be
justifiable with regards to supply-chain risk.

Lastly, the visualisation will combine the scores from each category into an
overall grade (e.g. A-F). To determine the goodness/badness of a score, we
can check which percentile it belongs to (calculated earlier in Processing), then
invert the percentile (p ← 100 − p) if lower is better. To combine into one
grade, an average of these percentiles is taken (using mean, root-mean-square
or another combining function), then convert to a letter.

5 Implementation

To implement the methodology described above, I return to using the NPM
registry and GitHub for the data sources. I then choose technologies for the
data storage and presentation, and identify scoring categories from the acquired
and processed data. Figure 5 shows the system flowchart again, with concrete
endpoints and components.

Following my previous suggestion of graph databases for efficiency, I used Neo4j,
an open-source Graph DBMS (Database Management System), to store the
data. A Neo4j database holds a graph of arbitrarily many nodes, each with an
arbitrary number of associated keys (properties). Nodes can be linked together
by relationships (edges) that can also have keys. The graph is accessed and
modified using Cypher, a declarative graph query language with syntactic and
semantic similarities to SQL.
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Figure 5: A flowchart of the various data stores and scripts used in my
system, with a small key. Due to the experimental nature of the project, the
system is quite disorganised, and relies on intermediary CSV files where direct
communication would suffice. See Figure 15 for a more structured architecture
suitable for a live service.

5.1 Data acquisition

Data acquisition and processing was divided into a series of tasks, described
below. Note that these tasks were more interdependent than the separate lists
suggest; for example, I needed to calculate the most popular packages before
accessing the GitHub data.

• Discovering all packages in the NPM registry: Constructing the
dependency network requires at least the name and direct dependencies
of every package in the registry. In NPM packages, this data is contained in
a package.json manifest file14. The package-stream package15 provides
a stream of the package.json files of all packages uploaded to the NPM
registry. So I wrote a straightforward Node.js script to access this stream
and write the data to CSV files.

Node.js makes a distinction between dependencies a project relies on
in production and dependencies that are only useful for development
purposes, known as ‘devDependencies’. I made the script store both pro-
duction dependencies and devDependencies, but when importing to Neo4j
I chose to ignore the devDependencies (see Section 7 for a justification).

14I also collected the repository URLs at this stage, as this is also included in the manifest
file.

15https://github.com/nice-registry/package-stream
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• Fetching package metadata: Given a list of package names and re-
pository URLs, we wish to find information about the size of a package,
dates of creation and modification, and the contributors responsible for
the package. Each of these features are accessible with different endpoints
in the GitHub REST API (GitHub, 2021):

– Dates: the ‘/repos/{owner}/{repo}’ endpoint returns properties
created at and pushed at, which are ISO timestamps for when the
repository was created and last pushed to, respectively.

– Package size: the ‘/repos/{owner}/{repo}/languages’ endpoint gives
a list of the programming languages used in each repository, along
with their total size in bytes. After filtering non-programming lan-
guages such as HTML or CSS, these sizes are summed to create the
‘bytes of code’ property.

– Contributors: the ‘/repos/{owner}/{repo}/contributors’ endpoint
gives a list of contributors and their total number of commits to this
package, ordered by commit amount.

Three Python scripts access each of these endpoints for each package, and
write the results to CSV files for import into Neo4j (see below).

• Fetching NPM security advisories: I was not able to find an API
endpoint that returned a list of security advisories in the registry, so I
had to scrape the public advisory list16 using Python and BeautifulSoup.
The advisory name, their affected package, disclosure date and severity
are written into a CSV file for Neo4j import.

5.2 Processing

The processing stage comprised of filtering, loading and computing statistics on
the acquired data, and is again divided into tasks:

• Filtering the package list: in attempt to make the input data more
consistent, I filtered the full package list to only packages containing a
repository URL under the github.com domain.
I chose GitHub because it was the most popular website for hosting
repositories, but similar API endpoints probably exist for other services
such as GitLab or BitBucket.

• Loading CSV packages and dependencies into Neo4j: I started
by importing the packages.csv file, creating a ‘Package’ node for each
package. I then imported dependencies.csv by inserting a ‘DEPENDS ON’
relationship between packages:

1 :auto USING PERIODIC COMMIT 1000
2 LOAD CSV WITH HEADERS FROM 'file :///.../ dependencies.csv ' AS row
3 MATCH (p1:Package {name: row.From})

16https://npmjs.com/advisories
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4 MATCH (p2:Package {name: row.To})
5 CREATE (p1)-[rel:DEPENDS_ON]->(p2)
6 RETURN count(rel);

Listing 1: A Cypher query to load the dependencies CSV file into Neo4j.

Since there’s over 3 million dependency relationships in the database, I
had to use the ‘USING PERIODIC COMMIT’ directive to commit the new
relationships every n rows of the CSV, to avoid running out of memory.

• Identifying most depended-upon packages (as a proxy for popular-
ity): To speed up the acquisition process, I wished to only download Git-
Hub metadata for the most popular packages, but package-stream does
not give any suitable statistics to indicate popularity. Since downloading a
package is equivalent to making it a dependency, I argue that the number
of dependents in the dataset is a suitable proxy for download counts, and
thus a package’s popularity. So this query was made to find all packages
depending on a given Package and store it as a property of the Package:

1 MATCH (p:Package{name:'package_name '})
2 MATCH (p) <-[:DEPENDS_ON *..10] -(p2:Package)
3 WITH p, count(distinct(p2)) as c
4 SET p.dependents = c;

Listing 2: A Cypher query to calculate the number of packages depending on
the package ‘package name’.

In an earlier version of this query, the transitive closure of DEPENDS ON was
not capped at 10 hops and was running out of memory before terminating.
Since the number of dependents was mostly stable when experimenting
with different maxHops values, I suspect the evaluator was stuck in a cycle
of dependencies.
Since I was also having out-of-memory issues when running this query
on all packages at once, I used a Python script to run the query on
each individual package. In retrospect, it seems that correct usage of
the UNWIND clause (i.e. UNWINDing on the list of package names) would
fix the memory issue and improve efficiency.

Using these counts, I selected the top 5,000 packages and exported them
to a CSV file:

1 MATCH (p:Package)
2 RETURN p.name , p.repo_url
3 ORDER BY p.dependents DESC
4 LIMIT 5000;

Listing 3: A Cypher query to fetch the 5,000 most depended-upon packages in
the database.

• Calculating percentile data for scoring categories: To be able to
draw histograms of the scoring categories without downloading the whole
dataset to the client, I precalculated histogram data for each property to
send instead. I used a Cypher query to return the value of the property
at percentiles 0-100 and used these arrays to construct the histograms.
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1 MATCH (p1:Package) where exists (p1.bytes_of_code)
2 UNWIND p1 as x
3 MATCH p = (x) -[: DEPENDS_ON *1..9]- >(p3:Package)
4 WITH
5 x, SUM(distinct p3.bytes_of_code) as transBoC
6 SET x.TRANSITIVE_BYTES_OF_CODE = transBoC;
7

8 MATCH (p:Package)
9 WHERE exists (p.TRANSITIVE_BYTES_OF_CODE)

10 WITH
11 p.name as name ,
12 sum(p.TRANSITIVE_BYTES_OF_CODE)/toFloat(p.bytes_of_code) as

code_size_ratio
13 UNWIND range (0 ,100) as x
14 RETURN x as percentile , percentileCont(code_size_ratio , toFloat(x)/100)

as value;

Listing 4: A Cypher query that returns 100 percentiles of the ratio between the
size of the package and its dependencies. Because of double counting errors, I
needed to write to a temporary property (‘TRANSITIVE BYTES OF CODE’)
before UNWINDing.

I exported the query result as a CSV and loaded it into the interface
JavaScript manually. In a live service, these queries should be intermit-
tently executed on the up-to-date graph, and the results loaded into the
interface through an API endpoint.

5.3 Visualisation

As mentioned earlier, my implementation uses a server/client model for the
interface. The visualisation is constructed in a web application, using JavaS-
cript for logic and HTML/CSS for rendering. The application consists of a
single HTML document which sections are made visible depending on the URL
accessed: ‘/’ for the index page, ‘/details’ for the single-project visualisation
and ‘/compare’ for the new dependency visualisation.

The web application and API endpoints are served by a Node.js server. URLs
starting with ‘/api’ are passed to an API handler that responds with JSON
objects, and for all other URLs the webapp HTML is served.

To draw the network graphs and histograms, I used D3.js (a.k.a. D3), an
open-source data-driven graphing library. It provides useful interfaces to draw
graphs into <svg> elements, along with an implementation of particle force
simulations to naturally spread-out nodes of a network graph, which alleviates
some layout work.

For the styling of other elements on the interface, I used the Bootstrap CSS
framework, which defines styling rules for various HTML elements. I added
additional styling for elements such as the grade badges and D3 graph elements.
As recommended by Bootstrap, I used the Popper JavaScript library to show
tooltips with more information when (i) symbols are hovered over.

For the scoring sections, I defined 6 scoring categories based on the properties
I had available, which are listed in Table 2.
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Category Name Description (tooltip) Higher
is
better?

Combining
function

Dependency count The number of transitive dependencies this pro-
ject relies on

No Count

Contributors per package The average number of contributors lis-
ted against each package

Yes Average

Dependency size ratio Dependency kLoC ÷ your package’s kLoC No Sum ÷ Base
Historical Vulnerabilities Sum of past vulnerabilities, weighted by severity No Sum
Commits per day Number of commits to each package ÷ its age Yes Average
Dependency age Mean number of years since each package was cre-

ated
Yes Average

Table 2: A list of the scoring categories I included on the interface, along with
the combining function used to aggregate that score. The Higher is better?
attribute is used when combining the scores into the overall grade.

To access a visualisation, the index page provides a HTML form to direct
to both pages. A user inputs either the name of a package already on the NPM
registry, or uploads their projects’ package.json file17; for the comparison page,
they must also provide the name of a new package to depend upon. Submitting
a form redirects the browser to a URL with the package names written in GET
variables, and the correct visualisation is presented.

5.3.1 Command-line interface (CLI)

In addition to accessing reports via the index page, I developed a small command-
line interface in Node.js that, once installed globally18, is able to present a report
for the Node.js project in the current working directory, or a comparison report
between this project and a hypothetical new dependency.

1 > npm -scrm --help
2 Usage: npm -scrm [details | compare <package_name >]

Listing 5: The ‘--help’ output of the npm-scrm CLI.

Running the program with valid inputs reads this directory’s package.json

file, then opens the default web browser with a URL containing the correct
package names. This is evidently a reuse of the web interface rather than true
implementation of a CLI that produces static HTML reports. See Section 8 for
a further discussion of CLIs and static HTML reports.

17The JavaScript FileReader API can be used to read the package.json files in the client,
then redirect to the correct visualisation URL. My implementation instead uploads the file
to the server, which returns a visualisation based on the dependencies in the file. FileReader
would probably be more efficient, as well as more secure (see Section 8).

18using ‘npm install -g npm-scrm’
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6 Results

This section will show the output of each stage of the implementation described
above. Discussion of the results is reserved for Section 7.

6.1 Data acquisition

Acquiring the data took about a week, with most of this time spent fetching
package details through package-stream. In total, this script downloaded
and stored details of 1,469,824 packages19, and identified 4,548,778 direct de-
pendency links between packages. Filtering the list to only packages with
GitHub repository URLs this down to 931,225 packages, and 3,007,109 direct
dependencies between them.

After selecting the top 5,000 most depended-upon packages, the repository
scripts downloaded metadata for the dates, codebase sizes and contributors,
which took a few hours to complete on 16 Nov 2020. The scripts identified
19,738 unique contributors appearing in the top 5,000 repositories, and 75,756
links between a contributor and a repository. So on average, a contributor
appearing in the dataset has contributed to 3.84 packages in the top 5,000
NPM repositories.

Scraping the NPM advisory page was faster than the previous steps, due to
there only being 1,310 advisories on record when the script was executed on 8
Dec 2020.

6.2 Processing

In this section I’ll present some statistics of the acquired data; these statistics
are not visible to the end user of the interface, but some of them appear in the
Summary and the Scoring sections of the interface (see Section 6.3). To begin,
I calculated the transitive dependents20 count of each package, shown in Figure
6.

19i.e. all of the packages in the NPM registry as of November 2020.
20a transitive dependent of package A is a package that relies on A, through transitive

closure of the direct dependencies - i.e. any downstream package in the dependency network.
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Figure 6: A histogram of the ‘transitive dependents’ count of each package in
the dataset. The bucket labels indicate the upper bound of that bucket.

The histogram shows that 80% of the packages in the dataset have no
dependents at all, and 96% of packages have at most 10 dependent packages21.

In the other direction, a package has on average 5.0 direct dependencies, and
12.4 transitive dependencies - this distribution is shown in Figure 7.

Figure 7: A histogram of the ‘transitive dependencies’ count of each package in
the dataset. Again, the bucket labels indicate the upper bound of that bucket.

The dependencies histogram shows a surprising range of development prac-
tises in the NPM community. 35% of packages in the dataset (≈ 328, 000
packages) have no dependencies at all, and 56% (≈ 521, 000) have at most
5 transitive dependencies; on the other hand, 13% (≈ 120, 000) have over 100
transitive dependencies. This distribution is used as one of the scoring categories
(‘Dependency count’), shown in the next section.

Precomputing the percentile data for the scoring categories also reveals inter-
esting statistics about the distribution of values, shown in Table 3.

21Note that this data considers only public packages in the NPM registry - it’s possible that
many closed-source projects depend on some package that few packages in the registry do.
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Category Name Mean Median Standard Deviation
Dependency count 78.5 1 109
Contributors per package 15.2 11 11.9
Dependency size ratio 219 1.0 1240
Historical Vulnerabilities 0.0546 0 6.50
Commits per day 0.898 0.0616 2.39
Dependency age 5.89 years 6.10 years 2.24 years

Table 3: A table showing the mean, median and standard deviation for each
scoring category, to 3 significant figures.

6.3 Visualisation

As mentioned previously, the visualisation is split between ‘/details’ and
‘/compare’ pages, though the overall components are quite similar and described
in the sections below.

6.3.1 Dependency graphs

Both pages contain a network graph of the project’s dependencies, where pack-
ages are organised in a tree shape (with y-position determined by dependency
hops), scaled based on their source code size, and coloured based on their
package age and historical advisories (See Figures 8 & 9). Each package has
a tooltip containing these variables in textual form, appearing when the node
is hovered over.

Figure 8: A screenshot of the dependency graph presented on the single-project
page, with a colour key. A tooltip is shown for package ‘negotiator’.
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Figure 9: A screenshot of the dependency graph presented on the comparison
page, with a colour key. The colouring differs from the first graph to incorporate
the ‘existing/shared/new dependency’ information, but all previous features
remain.

6.3.2 Summary points

Both pages give a textual summary of the main properties of the dependency
tree, with the compare page containing slightly more information regarding the
changes to these properties (See Figures 10 & 11).

Figure 10: A screenshot of the Summary section on the single-project page for
‘express’.
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Figure 11: A screenshot of the Summary section on the comparison page
between ‘express’ and ‘request’.

6.3.3 Scoring categories & grade

Both pages give a series of score values that contribute to the overall grade,
with histograms plotted for each category, and markers indicating this package’s
position in the distribution (See Figures 12 & 13). On the details page, a
colour-coded percentile is given next to the score value, but on the compare
page a score change is displayed instead.

Figure 12: A screenshot (wrapped) of the Scoring section on the single-project
page. The overall grade badge is found below the scores, along with a disclaimer.
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Figure 13: A screenshot of the Score Changes section on the comparison page.
Two markers are inserted on the histogram to visualise the change.

6.3.4 Contributor statistics

Both pages have a list of the contributors with the highest influence over the
dependencies (See Figure 14). In this figure, the username have been scrambled
for anonymisation, and the GitHub profile hyperlinks have been disabled.

Figure 14: A screenshot (wrapped) of the ‘New/Returning Contributors’ sections of the comparison
page, with scrambled usernames.
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7 Discussion

This section will contain an analysis of the results found at each stage, and
a brief justification of the impact of the results. A discussion of limitations
relating to the methodology or implementation will be deferred to Section 8.

7.1 Data acquisition

To recap, the results from this stage consisted of counts of entries acquired of
each type (packages, contributors, advisories etc.).

A consequence of downloading a snapshot of a live dataset is that the data
quickly becomes outdated. Between November 2020 (when the data was down-
loaded) and March 2021 (the time of writing), ∼ 84, 000 new packages have been
published, and version updates to existing packages may have greatly changed
the graph landscape, which would affect the scores/grades for those packages.
The security advisories are also out of date, meaning malicious packages could
still be considered safe in this visualisation.

Another decision mentioned in Section 5 was to ignore devDependencies (de-
pendencies only used as development tools). This was done to reduce the size of
the database and to remove some confusion in the visualisation (how should the
difference between dependencies/devDependencies influence the graphs/scores?),
but also because it’s unclear how much devDependencies have a security im-
pact on the final product. Synk operate a C-SCRM service for NPM that
ignores devDependencies by default, arguing they ‘matter little when searching
for vulnerabilities’ (Podjarny, 2016). On the other hand, it seems that both
the left-pad availability incident and the event-stream injection attack (see
Section 2.2) would still have impacted the project if these packages were included
as devDependencies.

Other issues arise from the extraction of repository metadata. For example,
the script that fetches the size of code in a repository might be counting non-
program text as code22, and cannot determine which code is/isn’t bundled in
the built package, both of which could inflate the computed size of a pack-
age. Additionally, the histogram for contributors shows a large spike at 30
and no values after that, which revealed an oversight in my acquisition script
(repoToContributors.py), which was failing to make subsequent requests for
packages with more contributors than would fit in one response. I fixed the
script after identifying this error but decided not to re-run the analysis pipeline,
as it would only have a small impact on the results. Contributor identities
returned on this endpoint are sorted by contribution count (descending), so the
missing contributors had little influence on the packages relative to the included
ones.

On the topic of missing data, the proportion of packages lost when filtering by

22I excluded HTML and CSS files from the counting after briefly checking the script output,
but other non-program file formats are likely to persist.
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repository URLs containing github.com (37%) was higher than expected. But
examining the original list of packages shows that 30% of the packages actually
had no repository URL at all (or did, but were not following the standard format
of package.json files). This leaves 7% of repositories being hosted on other
services, such as GitLab and BitBucket - but these services only represent 18%
and 12% of the remaining packages, respectively. Therefore, it seems infeasible
to write handlers for all of the remaining repository locations. It’s possible
that some of the repository metadata could be acquired directly from the NPM
registry (or through proxy of other NPM metadata), which would allow the rest
of the packages to be included in the dataset.

7.2 Processing

Calculating the distribution of properties gave revealing insights into the state
of the NPM registry, but also revealed some incorrect expectations. With 80%
of the packages having no dependents in the registry, it suggests that many
packages are incomplete, redundant, or stale - meaning they would realistically
never be chosen by software developers. It’s still useful to include them in the
dataset (so the visualisation can mark them as security risks if necessary), but
it has the effect of heavily skewing the scoring category percentiles.

For example, Historical vulnerabilities is heavily skewed towards 0, which is
arguably because a large number of these packages have never been popular
enough to warrant a security review. The average number of dependents over all
the packages is 251, but the average number of dependents for packages with at
least one associated security advisory is 6,493 (∼ 25x larger). Interestingly, 52%
of packages with associated advisories (578/1,121) also have 0 dependents, likely
because the packages were later replaced with a ‘security holding package’ which
contains no code23. This suggests that ‘dependent count’ is not an accurate
measure of package popularity as these packages are still regularly downloaded,
so acquiring the actual download statistics would be more reliable. It would
also reveal the package’s usage outside of the NPM registry graph, which the
system does not currently consider.

7.3 Visualisation

In general, I believe the visualisations and the web application work as intended,
and are effective in their task of conveying information from the dataset. The
page loads in good time24 and has good performance25. I would be eager to

23See for example https://www.npmjs.com/package/angluar-cli; ‘angluar-
cli’ is a mistype of popular package ‘angular-cli’ containing malware
(https://www.npmjs.com/advisories/918).

24The majority of time is spent downloading scripts and data, which could be improved by
enabling HTTP/2 and gzip compression.

25Aside from the edge case of packages with ∼ 1, 000 dependencies, for which D3.js struggles
running the force simulation on so many nodes. The resulting graph is also too wide to fit on
a standard laptop screen, so perhaps a condition to omit some nodes when the count gets too
high would be useful.
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conduct a survey of developers’ opinions about this system and incorporate
their feedback, but that is outside the scope of this project.

One aspect with a few areas for improvement are the histograms under each
scoring category. Firstly, the power scaling (i.e. quadratic and quartic) on the
x-axis creates sub-integer buckets for integer-valued domains, so the Transitive
dependency count histogram has a visible gap between 0 and 1. Some bars are
drawn wider than others for no obvious reason; this seems to be a quirk of D3
that can probably be overriden. Additionally, strange tick values are generated
for the x-axis because I had to reimplement the generator function (D3 usually
generates the tick values before applying the scaling, resulting in non-uniform
ticks). Since the main intent of these histograms is to show the general shape
of the distribution and this project’s position in that distribution, these issues
are forgivable. In fact, the desired information could be conveyed in a graph
without any labels or scaling at all, akin to how sparklines are commonly used
in financial visualisations (Francy, 2005).

The scoring categories seem to be effective at differentiating the packages, as it’s
easy to come across packages with scores on the low end / high end / middle
of the distribution for a certain category. However, my selection of scoring
categories, and whether ‘higher is better’ for each, is not sufficiently justified,
on the interface nor in this paper. Indeed, for a category such as Commits per
day, it’s not immediately clear which direction is correct: a low score could
suggest inactive development or a slow reaction time to bug reports, but a high
score could suggest a volatile development cycle in which breakages are frequent.
It’s also an unintuitive unit, meaning an end user can only really hope their score
is near the middle of the distribution.

There are also categories I could have included using my existing data that may
have been more informative than the current ones, such as the total number
of dependents of all transitive dependencies of a project (the idea being that
more dependents implies more scrutiny). The selection of scoring categories is
clearly a complicated one, and warrants much deeper research into vulnerability
prediction from package metadata.

Lastly, while the overall grade is a useful feature in theory, I noticed it was
reporting low grades (F/E) much more commonly than high grades. Upon
observation, it appeared that scoring well in some categories correlated with
scoring badly in other categories: one example being an often-negative correla-
tion between Dependency age and Commits per day. Since users have the option
to disregard categories they’re not interested in, the correlation doesn’t seem
to be an issue. But perhaps one way to boost the grades would be to use a
root-mean-square average of the score percentiles rather than a simple mean, so
that higher scores are more distinguished and lower scores have less impact on
the grade.
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8 Reflection

Now that the capabilities of the visualisation system have been demonstrated,
it’s worth reconsidering the value of C-SCRM in open-source software develop-
ment. While software bugs and vulnerabilities are likely to never disappear from
an evolving codebase (Pressman, 2005), availability risks such as unpublishing
of packages can be addressed - and in NPM’s case, have been fixed. Packages
can no longer be unpublished after 24 hours of being published (Brown, 2017),
so it seems unlikely for another instance of the left-pad incident to occur.

Returning to Pashchenko, Vu and Massacci (2020)’s study, and Observation 13
(repeated below):

Observation 13: Developers recommend introducing high-level met-
rics that show that a library is safe to use (security badge), mature,
and does not bring too many transitive dependencies.

I would argue my visualisation achieves many of the features requested by the
developers: it has a high-level security metric presented in a badge (the Grade)
and has measures for library maturity and the number of transitive dependen-
cies, so it seems that the system would be of use to developers. Observation 16
is also worth discussing (p. 1521):

Observation 16: Developers recommend dependency analysis tools
to report only relevant alerts, work offline, be easily integrated into
company workflow, and report both recent and early safe versions of
vulnerable dependencies.

I would say my visualisation fails at this specification. The current architecture
does not work offline, doesn’t integrate well into an existing workflow (see later
discussions regarding a CLI), and doesn’t take package versions into account.
Making the dependency network version-aware would be quite difficult: I would
need to acquire the version history of every package.json file, then have de-
pendency edges associated with a range of version numbers. The additional
computation required to compare version numbers might also have a significant
performance impact on the database queries.

Another significant limitation of my implementation was the decision to use a
static dataset rather than a live service that observes and acts upon package/ad-
visory updates. A static visualisation still has value to developers; it successfully
shows trends in the dependencies of each package and can give an estimate for
the security of a new dependency. But this data will quickly go out of date and
become less reflective of the true nature of the packages. I didn’t implement a
live service as it would require overcoming too many technical hurdles outside
the scope of this project, but I would recommend doing this for a production
version. Figure 15 shows a suitable design for a live service, along with other
improvements.
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Figure 15: A flowchart of data acquisition & processing stages, with various
structural improvements and adjusted to support a live service. It’s unclear
whether services such as GitHub offer hooks/messages to notify a change, so a
cron job trigger is used for periodic invocations of the script.

8.1 Data acquisition

The dataset in this implementation is intended to be a snapshot of the state of
the packages at a certain date. But some scripts took days to complete, and
other scripts were executed some time apart from each other, so the initial data
could be out of date even by the time the acquisition is finished. This would be
fixed in the live-service design, but the extent of this issue in the static design
is yet to be realised.

When writing the acquisition scripts, I designed most of them to output the data
to CSV files, which could be imported to Neo4j or used in subsequent scripts.
This was useful for understanding the data and debugging script failures, but
resulted in a lot of manual work when importing/exporting to/from Neo4j.
Having each script communicate directly with Neo4j would increase automation
and efficiency of the system.

As mentioned in the Discussion, filtering the packages by repository URL was
done too early in the pipeline; filtering should have been done after importing the
packages into Neo4j, so as to not skew the histogram data (see Section 6.2). But
a more significant filter was choosing only the top 5,000 most depended-upon
packages to acquire repository metadata for. This step was necessary as the
GitHub API was heavily rate-limited; acquiring data for more packages would
delay my project by a large amount. It might be worth exploring ways to expand
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the 5,000 limit without sending too many requests to the GitHub API. I imagine
that in a live service, the rate of package updates would be considerably lower
than the GitHub API rate limit, so the challenge would only apply to acquiring
the initial set of data.

8.2 Processing

On the topic of a live service, it’s worth noting that many of the pre-processing
steps in my methodology will become more complex. When a package adds
a new dependency in a version update, the dependents/dependencies counts
for every upstream/downstream package will need to be updated, along with
any other stored aggregate statistics. As long as the number of transitive
dependencies stays much smaller than the size of the whole dataset, this should
be cheap enough to execute in real-time.

One thing I realised when testing the interface is that it’s possible, and normal,
for multiple NPM packages to be developed in (and therefore, point to) the
same version control repository, meaning the bytes and contributions in these
repositories are double counted. As a particularly bad example, the @types/...
collection of packages is operated by a bot which stores all 6,500+ packages
in the same repository26. It’s unlikely to see more than a couple of these
packages in a project’s dependencies, but the database counts contributions
to one package as contributions to all the others, resulting in bloated package
sizes. It’s unclear how this could be rectified (perhaps uniformly-distribute the
contributions between packages sharing repositories?), but it’s worth bearing in
mind when considering other package managers to visualise (see Section 9.1).

Choosing Neo4j for database management seems to be the right decision. The
Cypher query language took some getting used to, and its relative infancy com-
pared to SQL makes online documentation more difficult to come by, but having
a direct correspondence between the abstract operation and the actual graph
layout of the data makes the resulting queries fairly intuitive. Unfortunately,
Cypher queries that accessed/modified the whole graph would often fail from
running out of memory on my machine. I fixed this by instead using a script to
update one node at a time, committing the result in between each query.

8.3 Visualisation

I’m happy with the presentation and contextualisation of data on the interface,
though as mentioned the feature selection is lacking in justification. The scoring
categories are plausible but unsubstantiated, and calculating the overall grade
as an average of each score’s ‘goodness’ is especially subjective. I believe there’s
a trade-off between academic, evidence-backed correctness and usefulness to
developers. To satisfy both sides, I try to present quantitative values where
possible, but contextualised with simplified statistics like the grade and the

26https://github.com/DefinitelyTyped/DefinitelyTyped
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unlabelled histograms. This is reminiscent of Shneiderman (1997)’s mantra
(“Overview first, zoom and filter, then details-on-demand”): the grade would
represent an overview, and the individual statistics and tooltips would be details-
on-demand. The mantra doesn’t apply so well to the application’s UI; the
high-level statistics are buried further down the page than they should be
(compared to ReviewMeta and ToS;DR, which both present their grade at the
top of the page). It would be easy and worthwhile to reorganise the HTML
output to improve ‘at-a-glance’ readability.

Making a web application was decided for easy implementation, but for a
product that better aligns with developers’ workflows, it would be preferable
to generate static HTML report files from a CLI, similarly to the powercfg

/batteryreport tool on Microsoft Windows. A CLI already exists in my
implementation, but making it the main entry point would be advantageous for
a number of reasons: a majority of software development tools are CLIs (Unwin
and Hofmann, 1999), so it would fit in well with existing workflows; developers
might be working on virtual machines without a web browser and need to copy
the report elsewhere; and it would open the opportunity to export reports in
alternative, machine-readable formats such as JSON files. The client-server
model could still apply, but calculating the scores and summary points could be
done in the CLI instead of in the web browser27.

Regardless of using a web application or outputting static pages, the client-server
model poses a security risk when requesting the dependency data from the
server. Disclosing the dependencies of a closed-source project reveals a large
attack surface and may even reveal current vulnerabilities in the project. The
npm audit tool uses ‘non-reversible identifiers’ to scrub sensitive information
from its web requests (npm Inc., 2021), so a similar technique could be used to
prevent information leakage from secure projects.

Speaking of privacy, anonymisation of contributors is worth considering. In my
implementation, an optional flag replaces the contributors’ username strings
with their MD5 hashes in the client JavaScript28. It’s unclear whether the con-
tributors’ identities should be disclosed in a production version of this system.
The underlying data is readily available on GitHub, but it’s possible that the
context of risk and influence in this visualisation implies that some contributors
should be trusted above others. Singling out individuals as a security risk
compared to singling out packages seems more controversial, and the potential
impacts should be greatly considered before releasing this feature.

27Considering visualisation libraries such as D3.js would still be needed, browser scripts are
still required to load the correct data into the graph, but these can be embedded in the HTML
output.

28This is of course insecure; anonymisation should be done on the server, but this feature
was only added to produce those screenshots.
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9 Conclusions

In this project, I have created a novel visualisation of open-source software
package dependencies in the NPM registry. Starting with research of risk
factors within and surrounding third-party source code, I identified and acquired
necessary sets of data and linked them together in a graph database model.
I developed a web application to construct reports about the security of an
existing project, and of that project with a new dependency. End users are
given contextualised scores that indicate risk, and an abstracted grade for easy
comparison between similar packages. Interesting results were also discovered
and documented during the processing of the data; namely that a large propor-
tion of packages in the NPM registry have no dependencies, nor any dependent
packages in NPM.

While the web application was successful in generating visualisations of the
dependencies and associated risks of any package in the NPM registry, it faced
a number of limitations, which were mostly due to the size of the dataset,
the limited access to repository metadata (i.e. the API rate-limiting), and the
continuously changing nature of the dependency graph. Recommendations for
overcoming these limitations include implementing a live service that updates
the database in real-time and replacing the web application with a command-line
interface that generates static HTML reports.

To further assess the project’s success, I compare and contrast my result with
existing solutions - specifically Synk’s Advisor, as shown in Section 3.3. Most
obviously in common, Advisor gives a qualitative overall score, calculated from
the scores of sub-categories, based on data accessed from the source code re-
positories and package registries. In particular, they specifically use statistics
like package age, commit frequency, contributor counts and package size, as I
do. The ‘Dependents’ statistic in the Popularity category (see Figure 3) reveals
that they too are operating on the whole NPM dependency network, but not
presenting it graphically as I am.

For other differences, I notice they feature download statistics (a data point I
was not able to acquire) quite prominently as a proxy for package popularity,
which was considered earlier in my report. Their Security category is much
more detailed than my statistics on advisories, instead giving a breakdown of
high/medium/low-severity vulnerabilities for each ‘significant version’ of the
package and its dependencies. This feature relies on their proprietary dataset
of package vulnerabilities, which is likely more detailed than the NPM security
advisories I used. Finally, Advisor has a greater focus on the operations side of
software development, detailing aspects like the package’s licence and Code of
Conduct.

While I feel my visualisation is commensurate with Synk’s, theirs has many
features that outperform mine (along with a more compact and readable UI),
and it’s a useful insight into properties they consider valuable to developers.
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9.1 Future work

One obvious direction of future work is expanding the visualisation, taking
on the suggestions presented throughout Sections 7 and 8. The suggestion of
evidence-backed scoring categories would be of particular academic interest, as
the system would then be able to suggest a definitive ordering of the quality of
software packages, with literature to justify the claims.

Another worthwhile research direction would be a field study with software
developers, both to assess whether such a visualisation would be effective in
influencing dependency choices, but also to collect feedback and suggestions
about the visualisation. Similarly to how I used Pashchenko, Vu and Massacci
(2020)’s observations to inspire this visualisation, the feedback would give valu-
able insights for improving the applicability of the system and reducing harms,
as argued by proponents of Responsible Innovation (Stahl et al., 2014).

Lastly, it might be beneficial to apply this methodology to services other than
NPM and GitHub. The methodology is kept suitably abstract such that other
package managers and version control servers can be used, such as PyPI (the
Python Package Index). But with enough abstraction of the input data, it
would be possible to apply the visualisation techniques (and possibly the web
application itself) to supply chains outside of software packages. One idea is
Docker Images, which are able to inherit packages and operating systems from
a base Image (Merkel, 2014). Synk actually offers security analysis for Docker
Images, but focuses more on the OS packages in an Image rather than the
chain of base Images (Armstrong, 2020). It could also theoretically be applied
to aspects of physical supply chains, or academic paper citations, or any large
directed graph of dependent entities with associated risk factors.
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