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1 Introduction

In the past 10 years, the total amount of malware in the world has increased by
1650%, with over 350,000 malicious programs discovered on a daily basis (AV-
TEST, 2020). Considering the demand for running third-party applications has
arguably also increased, the act of determining the safeness of a program is more
important now than ever.

Malware analysis has a wide variety of use cases, such as in long-term forensics
investigations, or antivirus software that must determine the safety of a file in
a short time. Because of this, a range of techniques have been developed, each
with their own intended time-frame and level of automation. The techniques are
often classified as static or dynamic, depending on whether the code is viewed
as binary data or actually executed.

Another point to consider is the urgency of the analysis. If a ’zero-day’ cyber-
attack has just begun and millions of machines are infected with a new strain of
malware, then it’s worth the time of a human security researcher (or many) to
properly decompose the malware; such a response is described in the first two
sections. For the day-to-day classification of millions of potentially malicious
files, it’s infeasible for humans to analyse each one, so automated methods as
described in the last two sections are applied.

2 Manual code reverse-engineering

One of the earliest techniques to understand a program (without access to its
source code) is by reading the machine instructions it performs and deducing
their overall effect. While it’s the cheapest technique here in terms of hardware
resources, it’s the most demanding in time and experience of a skilled reverse-
engineer. If an analyst finds suspicious instructions in a program (things like
disguising itself as another program, making strange system calls, etc.), regard-
less of if the code ever appears to execute, they can say with confidence that
the program has the potential to be malicious.

Originally, the only tools available to analysts may have been a hex-editor and
instruction set reference book, but nowadays their workload is significantly re-
duced thanks to disassemblers and decompilers. A disassembler is a program
that converts a binary machine code program into a human-readable assembly
file, specific to the binary’s target architecture. Since assembly code can still
be difficult to read for large-scale programs, a decompiler goes a step further
and converts an assembly file into a high-level programming lanaguage. An ex-
ample of these tools combined into one open-source project is Ghidra, released
by the US National Security Agency in 20191. Ghidra supports disassembly

1though its existence was leaked two years prior.
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and decompilation of many architectures, such as x86, ARM, MIPS and JVM
bytecode (NSA, 2019).

Figure 1: A screenshot of Ghidra’s code browser screen, showing a disassembly
of the program (center), and a decompilation into C (right). (Cimpanu, 2019)

2.1 Weaknesses: Obfuscated, encrypted & staged pay-
loads

A common defence against reverse-engineering is to make the binary code diffi-
cult to understand, which is done by altering the instructions or control flow to
less common variations, without changing the outcome of the program. Some
innocent actions such as enabling compiler optimisations can disrupt the more
rudimentary decompilers, but an attacker who deliberately wants to confuse a
reverse-engineer could develop a method to make the code mostly unrecogniz-
able - a good example of which is an obfuscator by Chris Domas that compiles
C code into a (very long) series of x86 MOV instructions (Domas, 2015).

Furthermore, an attacker may be able to completely prevent a researcher from
decoding a program by encrypting the main part of its code, leaving only a
method to decrypt the code after some arbitrary event. Msfvenom is a popular
malware payload encoder, which gives options to encrypt the binary (Security
Tutorials, 2020), perhaps to evade detection across a network.

Lastly, it’s possible that the malicious code isn’t even available on the hard
drive. Some attacks - especially those that infiltrate a computer via a computer
network - use a staging system, where the only purpose of the original code
is to download a second set of instructions, store them in memory, then run
them. Such a program can only be analysed once the code is extracted from
memory, which may be a difficult task if the computer’s already infected. Using
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a sandbox (as described in the next section) might make the job of finding and
extracting malicious code from memory easier.

3 Interactive Behaviour Analysis

A simple way to determine the effects of opening or running a file is to just
perform the action - but preferably not on one’s personal computer! Ideally we
should use a virtual (or isolated) machine so malware cannot cause damage; it
would also be beneficial to have monitoring tools on hand such as process view-
ers, file watchers and packet analysers, to reduce the workload of the analyst.
This technique is known as interactive behaviour analysis, where a process is
monitored, automatically and manually, while under interaction with a human.

By running a program, this method can sometimes provide answers where static
analysis is unable to, for example if a program is too obfuscated to understand,
or is completely encrypted until a certain event is triggered. Such programs are
much easier to analyse by experimentation and observation rather than reverse
engineering. Interactive analysis can also be required where fully-automated
automated analysis (See Section 4) falls short, such as when user input is re-
quired.

An example of an interactive analysis system is Any.Run, a cloud-based sub-
scription service where researchers can submit files, interact with them in a VM
of their choice, and observe many details about its behaviour:

An interesting consequence of having a popular, centralised analysis system is
that it becomes a specific evasion objective for attackers (malware should avoid
acting maliciously if it’s being analysed on the platform), as has recently been
achieved (Abrams, 2020a). Such a targeted method is less likely to happen with
a custom-made sandbox, but still possible (see 4.1).

3.1 Weaknesses?

Aside from the specific attack against Any.Run, interactive analysis systems still
have disadvantages. One drawback compared to manual reverse-engineering is
the resources and infrastructure required to build a realistic and monitored
sandbox - or the money to purchase a sandbox service. It’s a lot larger in scope
than a single disassembler program, but still within the reaches of an established
research lab.

Additionally, one could argue these environments are only effective in detecting
expected behaviours. Network activity, modified files or visual prompts are
only observed because we expect modern malware to behave vaguely similar
to previous ones. If a program were to do something completely unexpected
(perhaps using a zero-day exploit), an interactive analysis may not notice it,
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Figure 2: A screenshot of Any.Run’s analysis tool, showing an interactive screen
capture of the VM (top left), a list of modified files (bottom left), and a tree of
processes spawned by the original program (bottom right). (Brinkmann, 2018)

whereas a static analysis of the code would reveal the technique. This argument
doesn’t hold for all behaviours: ransomware will always lock files in some way,
distributed denial-of-service trojans will always send network packets, and so
on.

4 Fully Automated Analysis

After learning how to perform a task, it seems the natural next step for com-
puter scientists is to automate it. Automated analysis software grew popular
in the early 2010s, largely due to the release of an open-source option in 2011
named Cuckoo Sandbox (Stichting Cuckoo Foundation, 2017). Such software
attempts to determine the safety of a program (or office documents opened in
their respective programs) by running them in an isolated virtual machine and
observing any high-level actions taken - known as signatures - such as network
requests made or system files modified.

Based on the actions observed, most sandbox systems return a score, indicat-
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Figure 3: A screenshot of Cuckoo Sandbox’s summary page, listing some low,
medium, and high importance signatures detected. (Carsula, 2017)

ing how confident it is that the file is malicious. They also report many other
data points acquired during the simulation, such as URLs requested, system
commands run, and modified files. Such data points could be used by analysts
or other systems to mitigate the global impacts of the program: file signatures
can be added to anti-virus software databases, and IP addresses identified as
command & control servers can be targeted for takedown (an example of which
is reported at (TechRadar, 2019)).

4.1 Weakness: VM detection & Analysis Evasion

In early 2009, the Conficker worm spread to a peak of 15 million computers
(UPI, 2009). The first analysts to reverse-engineer the malware had difficulty
observing its effects in a virtual machine, since it was able to detect it was in a
VM, and closed itself (Zdrnja, 2009). The worm’s technique was discovered the
year previous, so the analysts’ work wasn’t significantly hindered by the trick -
but it was the first in a series of ‘VM evasion’ techniques to be spotted.

Now that automated sandbox analysis is used in many classification pipelines,
it’s very common for malware to try and detect a virtual or sandboxed en-
vironment, and perform no malicious action if so. When a new technique is
invented, it’s a very effective method of having a malicious binary be deemed
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safe by sandboxes. But once the technique is discovered, it can be added to the
actions that sandboxes look out for, and ironically become an effective method
of classifying a file as malicious.

Such evasion measures are unlikely to be effective in Interactive Behaviour Ana-
lysis; for an analyst to be checking a specific file, they would already suspect
it’s malicious, and can take measures to make the malware behave properly.

While modern analysis software can defend against most known anti-VM tech-
niques, new methods for identifying a sandbox are frequently being found. For
example, it was discovered in late June that some modern strains of malware
check the machine’s screen resolution - since the VMs used in analysis sandboxes
are often left at the default 800x600px resolution, which isn’t commonly found
in real life (Abrams, 2020b).

The cycle of creating a new anti-VM technique, analysts discovering the tech-
nique, and modifying the sandbox software will likely be a game of cat and
mouse that continues as long as malware does.

5 Static Properties Analysis

While both effective methods, manual code review and automated sandbox ana-
lysis take a long time to complete and require significant resources, which can’t
be scaled to classify for millions of files required by an antivirus software vendor.
We need a method to determine a file’s safety in a short time and with little
resources. For safety reasons, we may also want to avoid executing the file 2, so
our classification will be made purely on the binary data.

Static Properties Analysis finds what we could call ‘embedded’ and ‘generated’
properties of a file, and uses to make educated guesses about its safety. Em-
bedded properties include string constants (identified within the binary by their
ASCII values and position in the file), file metadata (company names, version
numbers etc.), and other details that can fingerprint compiler configuration.
Generated properties mostly involve hashes and file sizes.

5.1 Weakness: randomised obfuscation

Unlike manual code-reversing, typical obfuscation or encryption doesn’t stall
a fingerprint-based approach, because copies of the file would still hash to the
same value, and obfuscated/encrypted code and strings would still be suitable
fingerprints. However, if a malware creator (or distributor) were to add random
data to each copy of a file, they would hash to different values and it would no
longer be a suitable detection measure.

2Some antivirus programs such as Avast have local sandboxing features, which can be used
by a consumer to verify a program’s safety (Avast, 2020).
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To mitigate this, some malware analysis programs (e.g. Cuckoo and Virus-
Total) provide an ssdeep hash, which is an implementation of context triggered
piecewise hashes (CTPH)(ssdeep Project, 2017). Unlike typical hash functions,
CTPH values for similar inputs (defined by ssdeep as having ‘sequences of
identical bytes in the same order’) produce hashes that are also (bitwise) sim-
ilar. This allows analysis software to identify file with small amounts of random
data as the same family of programs (with reasonable confidence), and classify
them accordingly3.

However, CTPHs can also be defeated by a stronger randomization of the file;
namely reordering or obfuscating instructions at random without damaging the
overall effect of the code. This can remove almost all sequences of identical
bytes between files, resulting in unrelated CTPHs.

6 Conclusion

Throughout this overview, we have seen how a combination of static and dy-
namic analysis is most effective to understand the behaviour of malware, in both
human or automated contexts. It’s important to bear in mind that current sig-
natures and even toolsets may be inadequate to understand the capabilities of
sophisticated malware in the future - perhaps even some in the wild right now
- so analysts must learn from and adapt to the changing threat landscape.

3Interestingly, ssdeep was originally designed to detect spam email with random altera-
tions, but was later found to also be effective for machine code.
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